
A Method to Evaluate
CFG Comparison

Algorithms
Patrick P.F. Chan

Christian Collberg

Research problem

• Which CFG similarity algorithm is better?

• I come up with a new algorithm, how does it
compare to the existing ones?

• Is there a systematic way to compare CFG
similarity algorithms?

Research outcomes
• A methodology to evaluate and compare CFG

similarity algorithms

• Comparison results of four CFG similarity
algorithms

• A survey of existing CFG similarity algorithms

• A publicly available evaluation framework

What is CFG?

• CFG stands for control-flow graph

• A CFG represents all possible execution paths of a
function

• And thus, it encodes its behavior

a = input()

if a % 2 == 0

print
“even” print “odd”

Entry

Exit

True False

Why do we compare
CFGs?

Why do we compare CFGs?
• Malware detection / classification

CFGs of malware

Match

Why do we compare CFGs?
• Software theft detection

Original software Suspected pirated software

How similar?

Why do we compare CFGs?
• Programming assignments grading

Assignment
Submission

Solution

How similar?

Why do we compare CFGs?
• Code clones detection

How similar?

Why do we compare CFGs?
• Detection of changes between different versions of

a program

Why do we compare CFGs?
• Detection of changes between different versions of

a program

Match the nodes of the enhanced CFGs

This leads to many
algorithms to compare

CFGs…

Let’s use two existing algorithms
to compare these two CFGs

1

2 3

4

1

2 3

4

5

CFG A CFG B

Algorithm 1 from Kruegel et
al.

• Extract subgraphs that have k nodes (k-subgraphs)
from CFGs and match them

1

2 3

4

1

2 3

4

5

CFG A CFG B

1

2

4

1

2 3

1

2

4

1

2

5

1

2 3

2

4 5

No match!

Algorithm 2 from Hu et al.

• Approximates the minimum number of edit
operations needed to transform one graph into
another graph

Cost of matching
node 1 of CFG A

to node 1 of
CFG B

Cost of deleting
node 1 of CFG B

Cost of deleting
node 4 of CFG B

Cost of matching dummy
nodes

Cost of deleting nodes in CFG B

Cost of deleting nodes in CFG ACost of matching nodes

1

2 3

4

1

2 3

4

5

CFG A CFG B

1

2 3

4

1

2 3

4

5

CFG A CFG B

Total cost = 5

And there are many other
algorithms…

• Algorithm from Vujosˇevic ́-Janicˇic ́ et al. iteratively
builds a similarity matrix between the nodes of the
two CFGs, based on the similarity of their neighbor

• Algorithm from Sokolsky et al. models the control
flow graphs using Labeled Transition Systems (LTS)

But which one is the
best?

Evaluation of CFG similarity
algorithms

• Start by generating CFGs G1, G2,...,Gi with increasing edit
distances with respect to a seed CFG G0

• i.e. ED(G0,Gi) = i

• Use the algorithm under evaluation to rank the CFGs such
that the higher is the similarity score between Gi and G0
given by that algorithm, the higher Gi is ranked

• Get a “goodness score” for the algorithm by comparing
the ranking it produces to the ground truth ⟨G1, G2, G3,...⟩,
using ranking correlation algorithms such as sortedness or
Pearson correlation

Example

G0

Example

G0

G1

G2

G3

ED = 1

ED = 2

ED = 3

Example

G0

G1

G2

G3

ED = 1

ED = 2

ED = 3

Ranking: ⟨G1, G2, G3⟩

Example

G0

G1

G2

G3

ED = 1

ED = 2

ED = 3

Ranking: ⟨G1, G2, G3⟩

G0

G1

G2

G3

SimA = 0.4

SimA = 0.1

SimA = 0.8

Example

G0

G1

G2

G3

ED = 1

ED = 2

ED = 3

Ranking: ⟨G1, G2, G3⟩

G0

G1

G2

G3

SimA = 0.4

SimA = 0.1

SimA = 0.8

Ranking: ⟨G3, G1, G2⟩

Example

G0

G1

G2

G3

ED = 1

ED = 2

ED = 3

Ranking: ⟨G1, G2, G3⟩

G0

G1

G2

G3

SimA = 0.4

SimA = 0.1

SimA = 0.8

Ranking: ⟨G3, G1, G2⟩

Pearson correlation = -0.5

Two questions remain…

1. What is the definition of the edit distance between
two CFGs?

2. How to generate those CFGs such that they have
increasing edit distances with the seed CFG G0?

What is the definition of the edit
distance between two CFGs?

• The Graph Edit Distance is a function ED : (Gi, Gj)
→ N that computes the smallest number of edit
operations needed to transform Gi into Gj.

• There are four possible edit operations

What is the definition of the edit
distance between two CFGs?

• Add a zero-degree node

1

2 3

4

1

2 3

What is the definition of the edit
distance between two CFGs?

• Add an edge between two existing nodes

1

2 3

4

1

2 3

4

What is the definition of the edit
distance between two CFGs?

• Delete an edge between two existing nodes

1

2 3

4

1

2 3

4

What is the definition of the edit
distance between two CFGs?

• Delete a zero-degree node

1

2 3

4

1

2

4

How to generate those CFGs such that
they have increasing edit distances with

the seed CFG G0?

a

b c

d

G0

How to generate those CFGs such that
they have increasing edit distances with

the seed CFG G0?
a

b c

d

a

b c

d

a

b c

d

Add
Edge

a

b c

d

e

Add
Node Add

Edge

a

b c

d

Delete
Edge

For every possible edit operation that can be applied to G0,
apply that and generate a new graph

How to generate those CFGs such that
they have increasing edit distances with

the seed CFG G0?
Do the same for the

newly generated graphs
Obtain the

Edit Distance Graph (EDG)

How to generate those CFGs such that
they have increasing edit distances with

the seed CFG G0?
a

b c

d

a

b c

d

a

b c

d

a

b c

d

Add
Edge

a

b c

d

e

Add
Node Add

Edge

a

b c

d

Delete
Edge

Add
Edge

Add
Edge

Randomly pick a CFG on
each level and they

become our G1, G2, G3,…

Implementation

• Re-coded four CFG similarity algorithms in Python

• Implemented the evaluation framework

• Generated an EDG with five levels

• Picked 100 test cases (each test case comprises
five CFGs)

Evaluation results

Evaluation results

Evaluation results

Evaluation results

Evaluation results

“Goodness score” statistics of the four algorithms

Evaluation results

Time used by the four algorithms to finish 100 test cases

Related work

• An evaluation framework for text plagiarism
detection

• Generate artificial plagiarism cases

• Shuffling, removing, inserting, or replacing words
or short phrases at random

Related work

• An evaluation framework for code clone detection
tools

• Inject mutated code fragments into the code
base

Future work

• Generate CFGs with instructions in the nodes

Edit instructions
=> huge EDG

Try our framework

• http://cfgsim.cs.arizona.edu/

• Evaluate existing algorithms

• Compare your own algorithm with the others

• Fine tune your algorithm

http://cfgsim.cs.arizona.edu/

Summary

• A methodology to evaluate CFG similarity
algorithms

• Publicly available evaluation framework

• Serves as a benchmark for CFG similarity
algorithms users / researchers

Thank you!

