A Method to Evaluate
CFG Comparison
Algorithms

Patrick P.F. Chan
Christian Collberg

Research problem

 Which CFG similarity algorithm is better?

* | come up with a new algorithm, how does it
compare to the existing ones”?

e |s there a systematic way to compare CFG
similarity algorithms®

Research outcomes

A methodology to evaluate and compare CFG
similarity algorithms

Comparison results of four CFG similarity
algorithms

A survey of existing CFG similarity algorithms

A publicly available evaluation framework

What is CFG?

 CFG stands for control-flow graph

A CFG represents all possible execution paths of a
function

e And thus, It encodes its behavior

ifa% 2 ==

False

print “odd”

Whny do we compare
CFGs?

Why do we compare CFGs?

« Malware detection / classification

CFGs of malware

Match

* 1 Qﬁ SN

v

Why do we compare CFGs?

o Software theft detection

How similar?

R

Original software Suspected pirated software

Why do we compare CFGs?

* Programming assignments grading

How similar?

7 | [Bersepadizaicioed

; toe vaees

§ | iat valuel, alued

4 ey v Rt A

’ beclea ~Lroe;

| R ¢ SGalakl & * 6 valuel de endts

1 . 0c STt = 4 g

14 t << *pAGASINALAAL = " << widdleInisial << end
1

16 £ << PaAlaed = ® 4¢ valued << enad

¥ < A = a1

10 555 "Rl .54 mama <. a5l

» l \ /

Assignment
Submission

Solution

Why do we compare CFGs?

e Code clones detection

1 function sort(s) {

2 for (int 1 = @0; 1 < s.length; ++1) l

3 for (int j = i + 1; j < s.length; ++j) /\4 /\4
4 if (s[i] > s[j1) swap(s[il, s[iD;

- }

7

8

9

10

11

12 function sort(s) { How similar?
13 for (int 1 = @0; 1 < s.length; ++1i) {

14 swapped = false

15 for (int J =1 + 1; J < s.length; ++j) {

16 if (s[i] > s[iDD { l

17 swap(s[il, s[iD;

18 swapped = true; /\ /\
19 }

20 }

21 if (!swapped) break; ' ' K_/ N
22 } l l

23 }

24 <

25 .

26

27

N
oo

Why do we compare CFGs?

* Detection of changes between different versions of
a program

Program P Program P’
public class A { public class A {
void ml() {...} void ml() {...}
t }
public class B extends A { public class B extends A {
void ml() {...}
void m2() {...} void m2() {...}

t }

public class El extends Exception {} public class El extends Exception {}
public class E2 extends El {} public class E2 extends EI {}
public class E3 extends E2 {} public class E3 extends El {}
public class D { public class D {
void m3(A a) { void m3(A a) {
a.ml(): a.ml()
try 4 try {
throw new E3(): throw new E3();:
I }
catch (E2 e) {...} catch(E2 ¢) {...}
catch (El e) {...} catch(El ¢) {...}

Why do we compare CFGs?

* Detection of changes between different versions of
a program

Match the nodes of the enhanced CFGs

This leads to many
algorithms to compare

CFGs...

|_et’s use two existing algorithms
to compare these two CFGS

Algorithm 1 from Kruegel et
al.

e Extract subgraphs that have k nodes (k-subgraphs)
from CFGs and match them

Algorithm 2 from Hu et al.

e Approximates the minimum number of edit
operations needed to transtorm one graph into
another graph

Cost of matching
node 1 of CFG A
to node 1 of

CFG B Cost of deleting

node 4 of CFG B

--

Cost of deleting
node 1 of CFG B

--

Cost of matching dummy
nodes

o

Cost of deleting nodes in CFG

CFG A

-~
R Bmo oo oo

B Enm ooooo
RO B oo ooo

Mm B R oo ocoo

oo o(—)8 8 8 8
N (o) 8 8 8o R
N o g Bim:ig R
(=)= ® 8= 8 8 8
CLEREREER:

Total cost = 5

ANnd there are many other
algorithms...

e Algorithm from Vujos evic’-Janic’ic” et al. iteratively
builds a similarity matrix between the nodes of the
two CFGs, based on the similarity of their neighbor

* Algorithm from Sokolsky et al. models the control
flow graphs using Labeled Transition Systems (LTS)

But which one IS the
best?

Evaluation of CFG similarity
algorithms

e Start by generating CFGs Gy, Go,...,G; with increasing edit
distances with respect to a seed CFG Go

* |.e. ED(Go,Gi) = |

* Use the algorithm under evaluation to rank the CFGs such
that the higher is the similarity score between G; and Gg
given by that algorithm, the higher G;j is ranked

 (Get a "goodness score” for the algorithm by comparing
the ranking it produces to the ground truth (G4, Go, Gg,...),

using ranking correlation algorithms such as sortedness or
Pearson correlation

Example

Example

Example

51
‘ED:‘I
Go
ED =2
ED =3
Go
G3

Ranking: <G+, G2, Gg)

ED =3

Ga

Ranking: <G+, G2, Gg)

CT
G‘] Sima=0.4
‘ED =
Go
ED =2
ED =3
Go
G3

Ranking: <G1, G2, G3) Ranking: (Gs, G1, G2)

G+
61 Sima=0.4
‘ED =1
GO Sima = 08/
ED =2
ED =3 GS
Go
G3 Pearson correlation = -0.5

Ranking: (G1, Gz, G3) < » Ranking: (G3z, G1, G2)

Two guestions remain...

1. What is the definition of the edit distance between
two CFGs?

2. How to generate those CFGs such that they have
increasing edit distances with the seed CFG Go?

What Is the definition of the edit
distance between two CFGs?

* The Graph Edit Distance is a function ED : (G, Gj)
— N that computes the smallest number of edit
operations needed to transform Gi into Gj.

* There are four possible edit operations

What is the definition of the edit
distance between two CFGs?

 Add a zero-degree node

)

>
O

What is the definition of the edit
distance between two CFGs?

 Add an edge between two existing nodes

>
(& O

What is the definition of the edit
distance between two CFGs?

* Delete an edge between two existing nodes

ONOL 20O
O O

What is the definition of the edit
distance between two CFGs?

* Delete a zero-degree node

ONOL 20O
O O

How

0 ger

they I

ave increasing edit distar

erate those CFGs s

Jch that

the seed CFG GO7

ofc

Go

ces with

How
they I

to ger

erate those CFGs s

Jch that

ave Increasing edit distances with
the seed CFG GO?

For every possible edit operation that can be applied to Go,
apply that and generate a new graph

How
they I

Do the same for the

to generate those CFGs s

Jch that

ave Increasing edit distances with

the seed CFG GO7

-- - .
......
-
-
-~
-
-
-~

-
-
-
-
-
-

Obtain the
Edit Distance Graph (EDG)

How to generate those CFGs such that

they have increasing edit distances with
the seed CFG GO?

Add Del
Node Add Add Edg
Edg Edg
" () (=) .
! 1 . N ! \
1) I} 1)
: .
1 1
1 1
I' ! ‘\ !
» v < | 4 v \ |

Randomly pick a CFG on
each level and they
become our G1, Go, Gs, ...

Implementation

Re-coded four CFG similarity algorithms in Python
Implemented the evaluation framework
Generated an EDG with five levels

Picked 100 test cases (each test case comprises
five CFGs)

Pearson correlation

Evaluation results

| & &

bt ST OO O =t

DO
-

40 60 80 100

Test case
(a) AHu

Pearson correlation

Evaluation results

B

— OT OO O =

|
| & &

20 40 60 80

Test case
(b) AKruegel

100

Pearson correlation

Evaluation results

| @ &

— T O O =

DO
-

40 60 80 100

Test case

(©) Avujosevié-Janicic

Pearson correlation

0
—0

Evaluation results

ek

20 40 60 80 100

Test case

d

\

"' ‘M y \ ' \

Y R N

(d) Agokolsky

Evaluation results

Algorithm Average Max(Best) Min(Worst)
AHu 0.885 ;, 03
‘AKruegel 0.486 1 -0.9
Avujosevié-Janici¢ 0805 1 0.4
ASokolsky 0.409 ‘, 0.8

‘Goodness score” statistics of the four algorithms

Evaluation results

Algorithm Total time used (sec) Relative time
'AHu 1.996 1.1
'AKruegel 1.815 1.0
AVujosevié-Janitié 6.179 3.4
ASokolsky 2.315 1.28

ime used by the four algorithms to finish 100 test cases

Related work

* An evaluation framework for text plagiarism
detection

* (Generate artiticial plagiarism cases

e Shuftling, removing, inserting, or replacing words
or short phrases at random

Related work

e An evaluation framework for code clone detection
tools

* |nject mutated code fragments into the code
base

Future work

e Generate CFGs with instructions in the nodes

Edit instructions
=> huge EDG

Try our framework

http://cfgsim.cs.arizona.edu/
Evaluate existing algorithms
Compare your own algorithm with the others

Fine tune your algorithm

http://cfgsim.cs.arizona.edu/

summary

* A methodology to evaluate CFG similarity
algorithms

* Publicly available evaluation framework

* Serves as a benchmark for CFG similarity
algorithms users / researchers

Thank you!

