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Abstract—Control-Flow Graph (CFG) similarity is a
core technique in many areas, including malware de-
tection and software plagiarism detection. While many
algorithms have been proposed in the literature, their
relative strengths and weaknesses have not been previously
studied. Moreover, it is not even clear how to perform such
an evaluation. In this paper we therefore propose the first
methodology for evaluating CFG similarity algorithms
with respect to accuracy and efficiency. At the heart of
our methodology is a technique to automatically generate
benchmark graphs, CFGs of known edit distances.

We show the result of applying our methodology
to four popular algorithms. Our results show that an
algorithm proposed by Hu et al. is most efficient both
in terms of running time and accuracy.

I. INTRODUCTION

Detecting similarities between two pieces of soft-
ware has found application in many, often security-
related, areas. For example, to detect or classify mal-
ware, we need to compare a code sample against a
database of known malware instances [1]–[7]; to detect
software theft we need to find code-segments from a
suspicious program that occur in published code [8];
to automatically grade programming assignments, we
need to compare assignment submissions to the code
provided by the instructor [9]; to detect code clones
we need to find multiple code-segments in a program
similar enough to be generalized into a macro or pro-
cedure [10]; and to detect changes between different
versions of a program we need to find the locations
where these versions are the same [11]. While similarity
analysis algorithms have been proposed that work on all
kinds of program representations (including raw binary
instruction, textual assembly code, source code, and
abstract syntax trees), a common approach is to compare
the Control-Flow Graphs (CFG) of the programs of
interest. This seems intuitively attractive since a CFG
represents all possible execution paths of a function,
and thus conveniently encodes its behavior. We define
a Control-Flow Graph as follows:

Definition 1 (Control-Flow Graph). A Control-Flow
Graph is a directed graph CFG(VCFG, ECFG) that
represents the control flow of a function. VCFG is the
set of nodes (known as basic blocks), each having a

single entry and a single exit point. An edge in ECFG

represents a possible flow of control from the end of one
block to the beginning of the other. VCFG has a unique
entry node which dominates all nodes and a unique
exit node which post-dominates all nodes. We use IEi
and OEi to represent the sets of incoming and outgoing
edges of a node i, respectively, and INi and ONi to
represent the sets of nodes connected to incoming and
outgoing edges of a node i, respectively.

While, in principle, a CFG can be arbitrarily com-
plex, graphs found in real programs tend to have some
very specific properties: the outdegree of a node is often
upper bounded by two (exceptions include nodes that
represent switch statements, exception handling, and
computed gotos); CFGs often resemble series-parallel
graphs [12]; CFGs are often reducible [13]; and basic
blocks tend to be small, on the order of 4-7 instruc-
tions [14].

In spite of the plethora of CFG-based code similarity
algorithms that have been proposed in the literature [1]–
[7], [9], [11], [15], [16], there seems to have been
little effort into evaluating them relative to each other.
In other words, we have no way of knowing under
what circumstances we should prefer one algorithm
over another, or whether a newly proposed algorithm
improves on the state of the art. This is problematic
since these algorithms are often at the heart of—and
seriously affecting the accuracy and performance of—
the applications they support. What is worse, there seem
to exist no methodologies for carrying out such evalua-
tions. In this paper we propose the first methodology for
evaluating software similarity algorithms that are based
on CFG topology.

A. CFG Similarity Algorithms

Since general graph similarity testing is expensive
and CFGs have some very special properties, we can get
significant benefits (both with respect to performance
and accuracy) from developing specialized CFG simi-
larity algorithms. These are defined as follows:

Definition 2 (CFG Similarity Algorithm). A CFG simi-
larity algorithm A is a function ∆A : (G1, G2)→ [0, 1]
that computes a real-valued similarity score between



two graphs G1 and G2. A result of 1 indicates that
the two graphs are identical. ∆ may use a function
NSA : (n1, n2) → [0, 1] to compute the node similarity
between two basic blocks n1 and n2.

Unlike in many related areas, there does not exist a
predefined gold standard for CFG similarity evaluation.
In this paper, we approach this problem by automati-
cally generating such a standard: a set of CFGs with
known edit distances from a seed CFG. This allows
us to evaluate a CFG similarity algorithm by looking at
how accurately and efficiently it can recover the relative
proximity between randomly chosen CFGs and the seed
CFG.

A CFG similarity algorithm may rely on graph
topology or basic block contents (instructions), or both,
to compute the similarity score. Taking block contents
into account can be very helpful. Consider, for example,
matching two functions f and g, both of which contain
exactly one CALL instruction, contained in basic blocks
BBfi an BBgj , respectively. In this case, a similarity
algorithm would be wise to directly match BBfi to BBgj .
In the work presented here we concentrate on topology
only, i.e. in Definition 2 we set NSA ≡ 1. It is important
future work to extend our methodology to content-based
CFG similarity algorithms.

B. Contributions and Organization

In this paper we make the following contributions:

• We present a methodology to evaluate and com-
pare CFG similarity algorithms. In particular,
this methodology allows us to automatically
generate CFGs with known edit distances with
respect to a seed CFG. The evaluation sys-
tem and benchmark graphs are provided under
an open source license allowing the research
community to evaluate new CFG similarity
algorithms and extend our methodology.1

• Using our evaluation methodology, we evaluate
four CFG similarity algorithms from the litera-
ture [3], [9], [15], [17]. We consider CFG topol-
ogy only. Our results show that the algorithm
presented by Hu et al. is superior to the other
three algorithms in terms of both accuracy and
efficiency.

• We survey existing general graph similarity
algorithms and CFG similarity algorithms and
discuss their application areas. This provides
insights into how common properties of CFGs
lead to specially crafted similarity algorithms
and why CFG similarity algorithms matter.

The rest of the paper is organized as follows. Sec-
tion II presents the evaluation methodology for CFG

1The source code of the evaluation system, the benchmark graphs,
and the source code of the re-implemented CFG similarity algorithms
can be found at cfgsim.cs.arizona.edu.

similarity algorithms. Section III describes the details of
four CFG similarity algorithms. Section IV presents the
evaluation results of the four CFG similarity algorithms.
Section V surveys related work. Section VI concludes.

II. EVALUATION METHODOLOGY

Fundamental to our investigation is the concept of
Graph Edit Distance:

Definition 3 (Graph Edit Distance). The Graph Edit
Distance is a function ED : (Gi, Gj) → N that com-
putes the smallest number of edit operations needed to
transform Gi into Gj . An edit operation is one of

• Add a zero-degree node.
• Delete a zero-degree node.
• Add an edge between two existing nodes.
• Delete an existing edge.

A cost function cost : (e)→ N gives the cost of an edit
operation e.

A node substitute operation is sometimes included
in the set of edit operations. For the purposes of this
investigation we will assume uniform costs, i.e. cost ≡
1.

Note that two similarity algorithms A and B may
produce totally different distribution of similarity scores
when applied to the same graphs. For this reason, eval-
uating algorithms by directly comparing their similarity
scores is not feasible. We instead use rankings.

Specifically, to evaluate a CFG similarity algorithm
A we start by generating CFGs G1, G2, . . . with in-
creasing edit distances with respect to a seed CFG G0.
That is, for each Gi, ED(G0, Gi) = i. We then rank
G1, G2, . . . according to the similarity scores given by
A such that the higher the similarity score ∆A(G0, Gi)
the higher Gi is ranked. We get a “goodness score” for
algorithm A by comparing the ranking it produces to
the ground truth 〈G1, G2, G3, . . .〉, using ranking cor-
relation algorithms such as sortedness [18] or Pearson
correlation [19].

A. Evaluation Algorithm

Algorithm 1 gives an overview of the evalua-
tion process for a set of CFG similarity algorithms
〈A1,A2, . . . ,Ak〉. The process starts by generating test
cases, where each test case is a tuple of CFGs with
known edit distances from a seed CFG:

Definition 4 (Test Case). Given a seed CFG G0 and
a depth d, a test case is a d-tuple (G1, G2, . . . , Gd) of
CFGs, such that ∀1 ≤ j ≤ d,ED(G0, Gj) = j.

The exact generation process is described in the next
section. We next compare each CFG in each test case
with the seed CFG, rank the results, and compute a
goodness score using the Pearson ranking correlation
method.

cfgsim.cs.arizona.edu


Algorithm 1 Evaluation algorithm. 〈A1,A2, . . . ,Ak〉 is
the list of similarity algorithms under study, G0 is the
seed graph, d is a parameter of the test case generation
process describing the length of each test case, n is the
number of test cases. The output is a ranking of the Ai,
best first.

procedure EVALUATE(〈A0,A1, . . . ,Ak〉, G0, d, n)
for a← 1, k do

for t← 1, n do
for g ← 1, d do

scoresg ← ∆Aa (G0,TestCasest,g)
end for
rank← rank(scores)
corrAa,t ← pearson((Gt,1, Gt,2, . . . , Gt,d), rank)

end for
avgcorrAa

= average(corrAa,1, corrAa,2, . . . , corrAa,t)
end for
return rank(avgcorr)

end procedure
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Fig. 1. Construction of EDG.

B. Benchmark Graph Generation

In order to generate CFGs with known edit distances
with respect to a seed CFG G0, we need to repeatedly

apply edit operations to G0. For example, if we remove
two edges from G0 to form G2, ED(G0, G2) should be
two. Additionally, we need to make sure that the edit
distances are the shortest possible; that is, if we can
generate the same CFG by applying different different
sequences of edit operations, we always choose the
sequence with the fewest operations. Finally, since we
allow add node and add edge operations, an infinite
number of CFGs can be generated, and we therefore
need to set an upper bound on edit sequence length.

To support the CFG generation process, we propose
an Edit Distance Graph (EDG). Intuitively, an EDG
represents all the possible CFGs that can be generated
from G0, given a set of possible edit operations. In
general, the EDG will be infinite, and in practice we
therefore bound it up to some depth d.

Definition 5 (EDG). An Edit Distance Graph (EDG) is
a directed graph EDG(VEDG, EEDG) where each vertex
v ∈ VEDG represents a CFG. An edge (v1, v2) ∈ EEDG

exists iff the CFG represented by v2 can be obtained
from the CFG represented by v1 through a single edit
operation. The CFGs represented by the vertices are
unique.

In Definition 3, we only allow adding and deleting
zero-degree nodes because we want to ensure that the
operations have unit costs. In other words, if we want
to delete a node we must first delete its incident edges
and if we want to add a node with some incoming or
outgoing edges, we must first create the node.

To construct the EDG, a CFG is used as the seed.
Every possible edit operation on the seed is used to
generate a new graph which may or may not be a
CFG (according to Definition 1). For each of the newly
generated graphs, an EDG node is created (if it does not
already exist) to represent it and an edge from the seed
node to the new EDG node is created. This process is
repeated for each of the newly generated EDG nodes
until a given depth d is reached. This creates levels of
EDG nodes. More specifically, an EDG node is at level
i if it is created with i edit operation(s).

Figure 1 shows the construction of an example EDG
of depth two. The EDG node representing the seed CFG
is shown in Figure 1(a). Figure 1(b) shows four graphs
generated after step 1 of the EDG construction, i.e.
nodes constructed by editing the seed CFG. The four
newly generated graphs are the results of performing
various kinds of edit operations on the seed CFG. Since
the seed CFG has no zero-degree node, no node deletion
can be performed. In Figure 1(c) the graph in the node
marked by † can be the obtained by modifying either
one of the two graphs whose EDG nodes are marked
with �. For this reason, only one node is created.

1) Test Case Generation: To generate a test case,
we randomly pick a CFG Gi from each level i of
the EDG to form a tuple (G1, G2, . . . , Gd). We ignore
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Fig. 2. Example CFGs used as a running example in Section III.

any graphs which are not legitimate CFGs according to
Definition 1.2 Since Gi has been selected from level i of
the EDG, it has been constructed by performing i edit
operations, starting from the seed CFG G0. Therefore,
ED(G0, Gi) = i, and the test case has the property
specified in Definition 4.

III. CFG SIMILARITY ALGORITHMS

To exercise the evaluation methodology of Section II
we applied it to a selection of four representative CFG
similarity algorithms. We give an overview of these
algorithms here and present the results of the study in
Section IV.

Algorithm AKruegel (Section III-A) is designed to
detect polymorphic network worms. The basic idea
is to construct fingerprints from k-subgraphs extracted
from CFGs found in executables collected from network
streams.

Algorithm AHu (Section III-B) is designed to per-
form fast approximate matching in malware databases,
allowing anti-virus companies to determine if a new
piece of malware is similar to any known instances.
The graph similarity algorithm uses graph edit distance
to compare the function-call graphs of a new malware
sample to existing examples. Although this algorithm
was designed to compare function-call graphs, here we
use it to compare CFGs.

Algorithm AVujošević-Janičić (Section III-C) is designed
to automatically grade students’ programming assign-
ment submissions. The graph similarity algorithm is
based on the intuition that two nodes i and j of graphs A
and B are considered to be similar if i’s neighborhood
of nodes can be matched to a neighborhood of j.

Algorithm ASokolsky (Section III-D) is designed to
quantify the similarity between viruses of the same
family. The algorithm formalizes CFGs as Labeled
Transition Systems (LTS). The basic idea is that a node
s1 in an LTS G1 simulates a node t1 in another LTS
G2 if any outgoing edge of t1 → t2 labeled by, say, a

2During the generation process we might have produced a graph
which is disconnected, or has no unique entry or exit node, and
which therefore is not a legitimate CFG. However, from such an
illegitimate CFG further operations could generate a legitimate one,
and it therefore remains part of the EDG. An illegitimate CFG will
never be part of test cases, however.

can be matched by an edge s1 → s2, also labeled by a,
in such a way that s2 simulates t2.

The two CFGs shown in Figure 2 will be used as a
running example to illustrate how these four algorithms
compute the topological similarity between two CFGs.

A. AKruegel: An Algorithm Based on k-subgraphs Min-
ing

Kruegel et al. [3]’s algorithm extracts subgraphs that
have k nodes (k-subgraphs) from CFGs and turns them
into feature vectors.

1) Step 1. Generating k-subgraphs.: First, the al-
gorithm performs a depth-first traversal starting from
each node N and generates a spanning tree rooted
at N such that the outdegree of every node is ≤ 2.
From these spanning trees the algorithm generates k-
subgraphs recursively by considering all possible allo-
cations of k−1 nodes among the left and right subtrees
under the node N . The result of this process is a set of
planar graphs such that the maximum outdegree is two
and the maximum indegree is one.

2) Step 2. Graph Fingerprinting.: Each k-subgraph
is next mapped to an integer (a fingerprint) such that two
subgraphs have the same fingerprint if and only if they
are isomorphic. The k-subgraph is first canonicalized
(using Nauty [20]), and then transformed into a k × k
adjacency matrix. The rows of the adjacency matrix are
then concatenated to form the fingerprint, a bit vector
of length k2.

3) Step 3. Graph Coloring.: The original algorithm
takes the contents of basic blocks into account by
assigning a 14-bit bit vector to each block, and con-
catenating these vectors onto the rows of the adjacency
matrix. A bit is set to 1 iff an instruction belonging to
one of 14 instruction classes appears in that basic block.
Since we only consider topology in this study, we omit
this step.

4) Step 4. Computing Similarity.: For their appli-
cation, AKruegel does not need to compute an actual
similarity score. In our experiments, we compute the
similarity between two graphs A and B using the
Jaccard index of their corresponding sets of finger-
prints [21]:

|fingerprint(A) ∩ fingerprint(B)|
|fingerprint(A) ∪ fingerprint(B)|

5) Running Example.: Figure 3 shows the two sets
of subgraphs extracted from CFG A and CFG B in
Figure 2 respectively where parameter k is set to 3. Due
to the self-loop at Node 2 of CFG A, the subgraphs
extracted from CFG A cannot be matched to any
subgraphs extracted from CFG B. In other words, the
similarity between the two graphs is 0.
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Fig. 3. Subgraphs extracted From CFG A and CFG B for Algorithm
AKruegel in Section III-A.

B. AHu: An Algorithm Based on Edit Distance

An algorithm based on graph edit distance is pre-
sented by Hu et al. [17]. The algorithm can approximate
the minimum number of edit operations needed to
transform one graph into another graph. The basic idea
is to build a cost matrix that represents the costs of
mapping the different nodes in the two graphs. After
that, the Hungarian algorithm [22] is used to find a
matching between the nodes such that the total cost (edit
distance) is minimized.

1) Step 1. Building The Cost Matrix: In order to
calculate the edit distance between two graphs, G1 and
G2, a cost matrix needs to be constructed first. Let
V1 and V2 denote the sets of vertices for G1 and G2

respectively. |V2| dummy nodes are added to V1 and |V1|
dummy nodes are added to V2. The cost matrix is thus a
(|V1|+ |V2|)× (|V1|+ |V2|) square matrix (see Figure 4
as an example). It represents the cost of matching each
of the nodes in G1 to any node in G2. Denote the entries
in the cost matrix by aij where i, j ∈ {1 . . . |V1|+|V2|}.
The cost matrix can be divided into four submatrices.
The first submatrix is a |V1|× |V2| matrix at the top left
corner. It denotes the cost of matching a real node in
G1 to a real node in |G2|. The values of the entries in
it are given by:

aij =relabeling cost + (|ONi|+ |ONj | − 2×
|ONi ∩ONj |)+
(|INi|+ |INj | − 2× |INi ∩ INj |) (1)

where

ONi and INi denote the outgoing neighbors

and incoming neighbors of the i-th node in G1

respectively.

ONj and INj are defined similarly for G2.

In the above formula, relabeling cost is the cost of
editing the instructions in a node to make them the same
as those in the node that is matched to it.

The second submatrix is a |V2| × |V1| matrix at the
bottom right corner. It is a zero matrix as it represents
matching a dummy node to a dummy node which costs
nothing. The third submatrix is a |V2| × |V2| submatrix
at the top right corner. It represents the matching of a
real node in G1 to a dummy node which essentially

means a node deletion. The values of the entries on the
diagonal are given by:

aij = 1 + |OEi|+ |IEi| (2)

where

OEi and IEi denote the outgoing edges

and incoming edges of the i-th node of G1.

The entries not at the diagonal are set to ∞. The
forth submatrix at the bottom left corner is defined
similarly to the third submatrix.

2) Step 2. Finding Best Match of the Nodes: After
the cost matrix has been defined, the aim is to find a
matching between the nodes in G1 and the nodes in G2

with the lowest cost. The cost of a matching is given
by the sum of the costs of the pairs in the matching
according to the cost matrix. This is an instance of the
assignment problem:

Definition 6 (Assignment Problem). Let A, B be two
sets of elements. A matching of them is a set of pairs
M = {(i, j)|i ∈ A, j ∈ B} such that no elements
are matched to more than one element of the other
set. The enumeration functions f : {1, 2, ..., k} → A
and g : {1, 2, ..., k} → B are defined such that
M = {(f(l), g(l))|l = 1, 2, ..., k} where k = |M |. The
weight function w(a, b) is a function assigning weights
to any pairs of elements (a, b) where a ∈ A and b ∈ B.
The weight of a matching is the sum of the weights of
the pairs in it. A matching is optimal if the pairs in it are
formed in such a way that the weight of the matching
is minimized.

The Hungarian algorithm [22] finds an optimal solu-
tion to the assignment problem in O(n3) time. Finally,
the edit distance between the two graphs is given by the
cost of the matching obtained.

3) Step 3. Computing Similarity.: AHu only com-
putes the edit distance but not the similarity score
between the two input graphs. In our experiments,
we compute the similarity scores using the formula
below. The rationale behind it is that for two completely
different graphs G1 and G2, to transform G1 into G2,
we need to delete all the nodes and edges of G1 and
add all the nodes and edges of G2.

sim(G1, G2) = 1−
edit distance

|V1|+ |E1|+ |V2|+ |E2|

4) Running Example.: The cost matrix built to com-
pute the matching of the nodes between the two CFGs,
CFG A and CFG B, in our running example is shown in
Figure 4. The four submatrices are enclosed by dotted
rectangles.

This cost matrix is built as described in Step 1. As
shown in the figure, the top left entry represents the cost
of matching node 1 of CFG A to node 1 of CFG B. It is
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Fig. 4. The cost matrix of match CFG A to CFG B in Algorithm
AHu in Section III-B.

Fig. 5. The entries chosen by Hungarian algorithm on the cost matrix
in Algorithm AHu in Section III-B.

given by equation 1. Since we just focus the topology
similarity, we ignore the relabeling cost. The first entry
of the 4th row represents the cost of deleting Node 1
of CFG B. It is given by equation 2. The Hungarian
algorithm is then used to find the best match between
the nodes of the two CFGs.

In Figure 5, the entries circled by black circles
represent matching between nodes in the two graphs.
The entry circled by dotted circle represents the deletion
of a node. The entries circled by grey circles represent
the matching between dummy nodes and they cost
nothing. Adding up the costs of these entries, we get
the total cost of these edit operations which is 5.

C. AVujošević-Janičić: An Algorithm Based on Neighbor
Matching

Vujošević-Janičić et al. [9] proposed a CFG simi-
larity algorithm based on neighbor matching. The basic
idea is to iteratively build a similarity matrix between
the nodes of the two CFGs, based on the similarity
of their neighbors. Given this similarity matrix, using
the Hungarian algorithm [22], a matching between the
nodes is found such that the resulting similarity score
is the highest.

1) Step 1. Topological Similarity.: Given two graphs
G1, G2, with m and n nodes, respectively, we iteratively
create an m × n similarity matrix. In the kth step, we
denote the matrix elements by akij . When k = 0, a0

ij =
1. In each subsequent step, the element values are given

by:

a
k+1
ij =

sk+1
in (i, j) + sk+1

out (i, j)

2
(3)

where

s
k+1
in (i, j) =

1

min

nin∑
l=1

a
k

fin
ij

(l)gin
ij

(l)
(4)

s
k+1
out (i, j) =

1

mout

nout∑
l=1

a
k
fout
ij

(l)gout
ij

(l)
(5)

min = max(|IEi|, |IEj |)
nin = min(|IEi|, |IEj |)

mout = max(|OEi|, |OEj |)
nout = min(|OEi|, |OEj |)

f in
ij and gin

ij are the enumeration functions of the
optimal matching of in-neighbors for node i and j
with weight function w(a, b) = akab, f

out
ij and gout

ij are
defined similarly. 0

0 is defined to be 1 (which occurs
when min = nin = 0 or mout = nout = 0). The
iterating ends when maxij |xkij − x

k−1
ij | < ε for some

chosen precision ε. After the algorithm terminates, the
similarity of the two graphs is given by the weight of
the optimal matching based on the similarity matrix.

2) Step 2. Node Similarity.: Given a pair of instruc-
tion sequences s1 and s2, the edit distance between
s1 and s2 is given by the minimum number of insert,
replace, or delete operations to transform s1 into s2.
The similarity between a pair of basic blocks is given
by 1−d(s1,s2)

M where s1 and s2 are the sequences of
instructions in the basic blocks, d(s1, s2) is the edit
distance between s1 and s2, and M is the maximum
edit distance between s1 and s2.

To take into account the node similarity, the topolog-
ical similarity algorithm described needs to be modified
in two ways. Let yij denote the similarity between node
i in G1 and node j in G2. First, when k = 0, all the
entries aij of the similarity matrix are set to yij . Second,
the values of the entries are now given by:

a
k+1
ij =

√
yij ·

sk+1
in (i, j) + sk+1

out (i, j)

2
(6)

3) Running Example.: Initially, the similarity matrix
is a 4 by 5 matrix with all entries set to 1. At each
iteration, the entries in the similarity matrix is updated
one by one. In this running example, we are interested
in how the entry at the 2nd row and 2nd column is
updated in the first iteration. That entry represents the
similarity between Node 2 of CFG A and Node 2 of
CFG B. The costs of matchings between these two sets
of in-neighbors are represented by a 2-by-1 zero matrix.

This cost matrix is calculated based on the initial
cost matrix (the one before the first iteration). The first
element in this vector represents the cost of matching
Node 1 in CFG A to Node 1 of CFG B. The second
element of this vector represents the cost of matching
Node 2 in CFG A to Node 1 of CFG B. They are both



zero since the initial similarity matrix consists of all
ones. The similarity between in-neighbors of Node 2
of CFG A and Node 2 of CFG B is then given by
equation 4. The similarity for out-neighbors of Node 2
of CFG A and Node 2 of CFG B is calculated similarly
and the value is 1. Therefore, the similarity between
Node 2 of CFG A and Node 2 of CFG B is given by
equation 3.

After the similarity matrix stabilizes, the calculation
of the similarity of the two CFGs is obtained by using
the Hungarian algorithm (see Definition 6) based on the
latest similarity matrix. The similarity score for the two
CFGs in the running example is 0.90.

D. ASokolsky: An Algorithm Based on Simulation

Sokolsky et al. [15] proposed a simulation-based
graph similarity algorithm. It models the control flow
graphs using Labeled Transition Systems (LTS). Given
two CFGs, the basic idea is to recursively match the
most similar outgoing nodes starting from the entry
nodes and sum up the similarity of the matched nodes
and edges. The similarity of two CFGs with entry nodes
n1 and n2 is given by the following recursive formula:

S(n1, n2) =


N(n1, n2) , if ODn1

= 0

(1− p) ·N(n1, n2)+

p ·max(W1,W2) , otherwise,
(7)

where

p ∈ (0, 1)

W1 = max
n2

b−→n′
2

L(b, ε) · S(n1, n
′
2) (8)

W2 =
1

ODn1

·
∑

n1
a−→n′

1

max(max
n2

b−→n′
2

(L(a,

b) · S(n
′
1, n

′
2)), L(a, ε) · S(n

′
1, n2)) (9)

In the above equations, N , L are functions that cal-
culate node similarity and label similarity respectively.
p is a parameter. ODn1 denotes the outdegree of the
node n1. In our experiments, we chose p to be 0.5 as
suggested in the paper to strike a balance between local
similarity and “step” similarity.

1) Running Example.: In this running example, we
demonstrate how we compute the similarity between
CFG A and CFG B. The computation starts with with
computing the similarity between node 1 of CFG A and
node 1 of CFG B. We skip the recursive calls to make
our presentation simple and easy to understand. We pick
p to be 0.5. Additionally, we ignore label similarity
because the edges of the CFGs are not labeled. We
assume all the nodes are the same since we want to
focus on structural similarity in this running example.

Since the outdegree of node 1 of CFG A is not
zero, according to equation 7, we need to use the
expression (1 − p) · N(n1, n2) + p · max(W1,W2) to
compute the similarity. In this expression, W1 and W2

are given by equation 8 and equation 9 respectively.
Figure 6a illustrates the computation of W1. It involves
the computation of the similarity between node 1 of
CFG A and the two children of node 1 of CFG B.

TABLE I. EDG METADATA.

Level No. of Newly Added CFGs Time used (sec) File Size (M)

1 82 3 0.05
2 3342 3 1.02
3 90242 78 23
4 1817182 2134 304
5 29140543 58825 5700

W1 is then given by the maximum of these two values
(i.e. max(0.9219, 0.9648)) and the result is 0.9648.
The calculation of W2 is divided into two parts. The
first part is illustrated in Figure 6b. It involves three
similarity computations as shown in the figure. The
maximum similarity scores among them is 0.9961.
The second part is illustrated in Figure 6c. It again
involves three similarity computations as shown in the
figure. The maximum similarity scores among them is
0.9375. W2 is then given by 1

ODn1
multiplied by the

summation of the maximum similarity scores given by
these two parts (i.e. 0.9961 and 0.9375) and the result
is 0.5 × (0.9961 + 0.9375) = 0.9668. After getting
W1 and W2, we can calculate the similarity between
node 1 of CFG A and node 1 of CFG B which is
given by (1 − p) · N(n1, n2) + p · max(W1,W2) =
0.5 + 0.5×max(0.9648, 0.9668) = 0.9834.

IV. EVALUATION

To ensure uniform implementations we re-coded
the four CFG similarity algorithms in Section III in
Python. We then evaluated them on a large number of
test cases generated using the methodology described
in Section II-B. In this section, we give details on
the generated benchmarks and present the evaluation
results.

A. Test Set

In order to generate the test set we built an
EDG of depth five. We used the CFG of the routine
Scramble ByteSequence from the automatic decom-
pilation of the Stuxnet virus [23] as the seed CFG G0.
We built the EDG in a breadth-first fashion. Table I
shows the number of graphs (including graphs that are
not legal CFGs) at each level. The generation process
took approximately 17 hours on a machine with two
Intel Xeon E5640 CPUs and 94 GB of RAM running
Linux 3.2.0. It generated more than 31 million graphs.

From the generated EDG we randomly selected
100 test cases. Each test case is a five-tuple
(G1, G2, G3, G4, G5) where Gi is selected randomly
from level i of the EDG. We then use the test cases to
evaluate the four CFG similarity algorithms as described
in Algorithm 1.
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Fig. 6. Running example of ASokolsky.

TABLE II. SUMMARY OF FIGURE 7.

Algorithm Average Max(Best) Min(Worst)

AHu 0.885 1 -0.3
AKruegel 0.486 1 -0.9
AVujošević-Janičić 0.805 1 -0.4
ASokolsky 0.409 1 -0.8

TABLE III. TOTAL TIME USED BY THE ALGORITHMS TO
PROCESS THE TEST SET.

Algorithm Total time used (sec) Relative time

AHu 1.996 1.1
AKruegel 1.815 1.0
AVujošević-Janičić 6.179 3.4
ASokolsky 2.315 1.28

B. Results

The results of the evaluation are shown in Figure 7.
The value given by Pearson correlation [19] is in the
range of [-1,1] with 1 indicating total positive corre-
lation, 0 indicating no correlation, and -1 indicating
negative correlation. Therefore, the higher the scores,
the more accurate is the corresponding algorithm. The
results given in this figure are summarized in Table II.
The average score given by AHu is the highest among
the four algorithms. Also, the min(worst) score given
by AHu is the highest. This means that the worst score
given by AHu is still better than the worst scores given
by the three other algorithms.

Table III shows the total time used by the four
algorithms to process the test set. Where AKruegel is the
best performing algorithm, the most accurate algorithm,
AHu, is only 10% slower.

To ensure that the choice of ranking correlation
method did not affect our results, we re-ran our eval-
uation using the sortedness [18] method instead of
Pearson, and saw no difference in the final analysis.

From our evaluation results, we can see that the two
algorithms that are based on the Hungarian algorithm

(AHu and AVujošević-Janičić) outperformed the other two
in terms of accuracy. The basic idea behind these two
algorithms are similar. Both of them try to build a matrix
that represents the costs of matching the nodes between
the two CFGs and find the optimal matching using the
Hungarian algorithm. AKruegel relies on exact matching
between extracted k-subgraphs. Since not all possible
k-subgraphs are extracted, some subgraphs that match
may be missed. On the other hand, since it requires
exact match between the subgraphs, the algorithm is
sensitive to even small changes to the CFGs. ASokolsky
compares the nodes between the two graphs starting at
the entry nodes and recursively compares their children.
This intrinsically imposes an ordering of comparison
and limits the possible matchings between the nodes.
Additionally, it requires a parameter p to be carefully
chosen. In the original paper, the authors mentioned that
they are considering machine learning approaches for
determining parameter values but details of that have
not been reported.

V. RELATED WORK

A. Graph Similarity

Generic graph similarity is a known hard prob-
lem (graph edit distance problem is NP-hard [24] and
subgraph isomorphism problem is NP-complete [25]).
Common approaches include graph edit distance [26],
graph isomorphism [27], [28], subgraph matching [29],
and iterative comparison [30]. However, The unique
properties of CFGs makes it feasible to develop spe-
cialized algorithms that perform well for graphs that
occur naturally.

B. Plagiarism Detection Algorithm Evaluation

Potthast et al. proposed an evaluation framework for
plagiarism detection [31]. In particular, they proposed
a methodology to generate artificial plagiarism cases
by shuffling, removing, inserting, or replacing words or
short phrases at random. However, their method is ap-
plied to generate text plagiarism cases only. Moreover,
the edit distances between the generated plagiarism
cases and the source passage are not known.
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Fig. 7. Evaluation result of the four CFG similarity algorithms by
Pearson correlation. (Lower is better)

Roy et al. proposed a framework to evaluate code
clone detection tools [32]. The first part of their frame-
work generates code clones automatically. The basic
idea is to inject mutated code fragments into the code
base. To mutate a code fragment, various editing op-
erations are performed. They include changing whites-
pace, changing comments, changing formatting, renam-
ing identifiers, replacing identifiers with expressions,
reordering declarations, etc. Again, the edit distances
between the generated code clones and the source code
base are not known.

C. CFG Similarity Algorithms

In addittion to the four algorithms in Section III,
many more have been proposed in the literature. We
briefely review some of them here.

Apiwattanapong et al. [11] proposed a CFG simi-
larity algorithm based on recursive structural matching
to identify changes between different versions of a pro-
gram. CFGs are extended to represent object-oriented
constructs and model their behavior. The comparison of
two extended CFGs starts with identifying single-entry,
single-exit subgraphs (called hammocks) and replacing
these with hammock nodes. The matching is then done
recursively on nodes and hammock nodes based on
labels. The algorithm proposed by Gheorghescu [1] only
compares basic blocks of the CFGs. The algorithm is
used to classify viruses. Bruschi et al. [4] proposed a
malware detection system based on graph isomorphism
tests on the CFGs of the malware. For the algorithm
proposed by AI-Daoub et al. [33], comparison is based
on the alignment of the node sequence and trying to
find if the their adjacency matrices are identical after
removing the mismatched nodes. Tsai et al. [16] pro-
posed an algorithm to evaluate control-flow obfuscating
transformations. It is based on counting the sizes of
the common subgraphs found in the two CFGs under
comparison. A CFG similarity algorithm based on graph
kernel is proposed by Anderson et al. [5] to detect
malware. A kernel, K(x, x), is a generalized inner
product and can be thought of as a measure of similarity
between two objects. Zhao [6] proposed a scheme based
on comparing features extracted from CFGs for virus
detection purposes. Another scheme to detect polymor-
phic malware variants was proposed by Cesare et al. [7].
It uses a structuring algorithm similar to the algorithm
used in the DCC decompiler [34] to generate the strings
for CFGs being compared. After that, q-grams are
extracted from the strings to form features. Kinable et
al. [2] proposed a graph edit distance based algorithm
to classify malware, based on their call graphs.

VI. CONCLUSION

In this paper, we proposed a methodology to eval-
uate CFG similarity algorithms. In the preprocessing
phase, we generate CFGs with known edit distances
with respect to a reference CFG. Then, we use the
CFG similarity algorithm under evaluation to measure
the similarity between some of these CFGs and the
reference CFG. After obtaining such CFG similarity
scores, we rank the CFGs according to the scores and
see how close the given rank is to the standard rank.

The current EDG construction does not take instruc-
tions in the nodes into account when generating new
graphs since doing so will tremendously increase the
number of possible edit operations on each graph and,
hence, the size of the resulting EDG. One direction for
future work is to take instructions into account and at
the same time control the size of the resulting EDG.
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